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Abrtnd. A new method of solving analytically coupled Riccati equations by means of 
embedding them into a matrix Riccati equation is proposed. This process imposes certain 
conditions onto the coefficients of the original equations. Whenever it is impossible 10 
match these requirements, the calculation of less demanding invariants is discussed. The 
algebraic structure ofthese is simple enough to be practically used for lowering the system's 
dimension. I n  general, the newly soluble equations do not possess the Painlev6 properly. 

1. Introduction 

Systems of ordinary differential equations play a crucial role in nonlinear science. 
Unfortunately, analytical solution algorithms are only available for quite special classes 
(Cair6 et a1 1989, Goriely and Brenig 1990, Kamke 1967, Ramani et o/ 1989). Thus, 
the aim of this paper is to add to the arsenal of methods for obtaining closed analytical 
solutions (cf also Escher 1980, 1981, Levine and Tabor 1988). It is also intended to 
extend the structure of time-dependent integrals over the Carleman-type ones (cf Cair6 
et a/  1989, Levine and Tabor 1988, Ramani et a1 1989). 

When discussing special cases, we have in mind (generalized) Lotka-Voltema 
equations: f, = O  for j #  i in (1) below (cf Cair6 et nl 1989) and their applications, 
e.g. as simple semiconductor laser rate equations (Petermann 1988), in semiconductor 
recombination models (Scholl 1982), and in the form U = u(2u - U), ti = u ( u  + 1 + u/m)  
arising in the theory of the porous media equation (Dresner 1983,1990). The restriction 
f, = 0 for j # i is less restrictive than it may seem at first glance (cf Ramani et a/ 1989), 
but some of the variety of complex behaviour, such as several limit cycles even for 
N = 2  and time-independent coefficients (Escher 1981), may be absent. 

When the nonlinear terms are all of second order, 
N N 

j-l  j . k - 1  
Xt = d+ f e& + / jkX,Xk i = 1,2,. . . , N (1) 

(x 3 dxldt), such systems may be called coupled Riccati equations. Analytical solutions 
are known only in some special cases, e.g. if f j k  =AS, (projective Riccatis). On the 
other hand, it is well known that the N x N matrix Riccati equation 

i = a + b .  x + x .  b ' + x .  E .  x (2) 
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is linearizable due to the non-commutative property of matrices. In this paper we 
investigate situations where system ( 1 )  can be represented in the matrix form (2). 
Because system (2) contains N2 equations compared with Nones in (l), this representa- 
tion is called an imbedding. Initially we consider the general case and concentrate 
then on that of two dependent variables, N = 2  (sections 2 and 3, respectively). 
Whenever the compatibility conditions required for a complete solution in terms of 
(2) are too rigid for the system under consideration, one may try to compute first 
integrals (invariants), in order to reduce the dimensionality of the problem. This is 
examined in section 4. Section 5 finally discuss our results, including their relation to 
other soluble cases known from the literature. 
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2. The embedding method 

There are NZ(N+ 1)/2 coefficients J j k ( = J k j )  in ( l ) ,  but only N2 matrix elements of e. 
Hence, one has to look for flexibility in the transition from (1) to (2). In order that 
(2) represents ( l ) ,  we thus make the ansatz 

N 

x ( t ) =  X Ai( t )x i ( t )+Ao( t )  
i - l  

where the N x N matrices A , .  . . A ,  are also to be calculated. 
By inserting the ansatz (3) into (2), using ( l ) ,  one gets the compatibility relations 

A,+x Aid. = a +  b .  Ao+A,b'+A,c.  A,  ( 4 a )  

Ai + E  A,e,, = (b+A,c)Ai  + Ai(b'+ c .  A,) i = l  ... N ( 4 b )  
j 

2 E AAjk = Ajc.  Ax + A ~ c .  A, j ,  k =  1 . .  . N. (4c)  

In spite of the need to determine the unknowns A , .  . . A,, these equations represent 
necessary and sufficient conditions for the coefficients of (1). Only ( 4 0 )  is a trivial 
equation for a, whereas those in (4c) are N ( N + l ) / 2  nonlinear matrix equations for 
the N +  1 matrices c and A ,  . . , A,, and ( 4 6 )  are then N linear matrix equations for 
the three matrices A,, b and b'. 

Although the linear terms in (1) can also play a decisive role for the integrability 
(cf Ramani et a1 1989). we have found it more complicated to match the conditions 
( 4 c )  for the physically relevant systems mentioned above and, thus, will concentrate 
mainly on them. 

If, for instance, A ,  is assumed to be invertible, one obtains immediately 

Defining 

B, = A;'Ai i = O  ... N ( 6 )  

it is seen that A ,  drops out and there remain only N free matrices to fulfil (4c) .  
Furthermore, 

b'= A ; ' A , + x  B,e , , -A;'b.  A ,  -Bo;- ; .  Bo. (7) 
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In general, the more the compatibility relations ( 4 )  impose conditions onto the 
coefficientsof(l),thehigher N is.Thereare N2(3N+1)/2equationsforthe N 2 ( N + 4 )  
transformation matrix elements ( A o ) d . .  , e,, thus about N2(  N -3)/2 conditions for 
the N 2 ( N  + 1)/2 hjks and N 2  e,s; the nonlinear character of ( 4 6 )  and ( 4 c )  prevents a 
simple counting of free parameters, however. 

We now examine the situation in more detail for the case N = 2. 

3. The case N = 2 

3.1. Regular matrix A ,  

Equations ( 4 c )  yield (omitting the unit matrix, I, as an obvious factor) 

f =f,1 I + 8 2 f 2  *I 

B:fZii +B2(f11, - f z 1 2 )  - f i 1 2  = 0 

& f 2 1 2 +  B2(fi12-f222) - f 1 2 2 =  0. ( 9 b )  

There are two principally different cases, not solvable ones like f2,, =0, fill = fz12, but ~ . . ~  f. # 0 can .-.~ he .. circumvented ~~~~-~~~ by a linear transformation of the dependent variables, xt : 
(i) B2 is proportional to the unit matrix, B2 = &I. We remark at once, however, 

that then x , ( t )  and x 2 ( f )  cannot be extracted separately from the solution of (2) as 

x = A l ( x l  + &x2) + A o  (10)  

in this case. By virtue of ( 9 ) ,  one condition is imposed on the f j k s .  This and similar 
cases are discussed in section 4. 

(ii) B2 is a solution of ( s a )  and (96) with f2], f212# 0 and is not proportional to I. 
Then the elimination of B: and comparison of coefficients gives the two conditions 

Further, in order to satisfy (46), one may chose Ai to be time independent and b = O  
(this would simplify the solution of the linearized equations) yielding a linear system 
of equations for the elements of Bo, 

(Bo&-B2B0)f= el,+ e l l  - B2e2J ( 1 2 )  

(B2 and f commute), and from (7) 

b'= el, + B,e,, -Bo& f. Bo 

If the LHS of (12) vanishes for some reason, insertion of ( 9 a )  into the RHS yields by 
virtue of the linear independence of B, and B: IWO conditions, namely 

elzhll = e2,fi12 (140)  

(ez2 - ell)hll = e21(f212 -fill). (146)  

These conditions can be circumvented by choosing b f 0, however. The conditions 
(11) turn out to be very severe. For this reason one could consider the case of singular 
matrices Ai .  
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3.2. Singular matrices Ai 

Equations (4c) read 

P Enders and 0 Schmidtmann 

A I ~ I I I + A ~ ~ ~ I ~  = A l e .  A, 
2A,f,12+2A2f212=A1c. A ~ + A ~ c .  A, 

A,f,22+ A2fz22= AZC. A2. ( 1 5 ~ )  

Af=Tr(Aj)Aj (16a) 
Ajc. Ai = cA,Aj (16b) 

In view of (15a) and ( lsc) ,  linear independence of A, and A, requires immediately that 

Now, det Ai = 0 implies the projector properties 

cA, = c,,a',l+ c,,a:;'+ c2,a(,:+ c,,ay;. 

f 2 l l  = f 1 2 2  = 0. (17) 
This suggests this case to be particularly suitable for Lotka-Volterra systems. The 
matrix e is then a generalized inverse (Pringle and Rayner 1971) of both A, and A2 
and contains a number of arbitrary matrix elements. It is hoped, consequently, that 
these degrees of freedom yield additional flexibility. 

For N = 2, however, a careful treatment of the system (15) only leads to the solution 
of the projective Riccati case. 

3.3. Mixed case: A, regular, A, singular 

Repeating the corresponding operations of the foregoing subsections 3.1 and 3.2, one 
obtains the following: 

f m = f 1 2 2 =  0 (18a) 

f z 1 2  - f i l l  =f,,,a!;" (186) 

fz22= CA,= ~ !~1~~f l l l+ f211~!~1~~  ( 1 8 ~ )  

(19) a l - l ) -  a ,1  ( -1)  a, ,  (2) + a ~ ~ ' ) a ~ ~ ) + a ~ ~ ' ) a ~ ~ ) + a ~ ~ ' ) a ~ ~ )  

Thus, in dependence on the vanishing of the coefficient f2,, there are two main cases: 
Case (i), fz,, ZO. Equations (18) then yield 

where a!;') belongs to the inverse, A;', of matrix A , ,  i.e. 

and e,, is defined in (166). 

f 2 2 2  = cAl (200) 

(206) a'"- 

f z 2 2 f 2 1 1 =  (f2l2--fill)f2l2. (20c) 

A2 -(f212-f111)/f211 

Case (ii), fz,, = 0. Here, 

f 2 2 2  = 

(2lb)  - 
AI - f 2 2 2 f f l l l  

f i l l  = f z 1 2 .  

Again, although there are more adjustable matrix elements, a;.2), cy, than conditions 
to be fulfilled, the nonlinear character of these conditions causes relationships between 
the coefficients fjk to be satisfied, too. In return, the elements of Ai and c are not 
completely determined. 
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4. Invariants 

The last section has resulted in compatibility relations (see ( 4 ) )  between systems (1) 
and (2) which impose certain conditions onto the coefficients in (1). These conditions 
are likely to prevent practical applications. At the same time the number of these 
conditions is diminished if some o f  the matrices Ai are allowed to be proportional to 
each other. Thus, a solution is not obtained for each dependent variable, x , ( t ) ,  
separately, but only for a linear combination of at least two of them representing, thus, 
a first integral or, after elementary operations, a (time-dependent) invariant. In the 
simplest case, 

(22) 
Equations (4c)  represent, then, one equation for e (becoming diagonal as well) and 
B S~'S:CZ of (?Jj'?j(N+ !) ~ 1 qn~d;~:ic e i p ~ t i ~ i i s  foi ths 1%'-1 iiixiki~ E 2 . .  . E N .  

Similarly, ( 4 b )  then represent one equation f o r b  (orb ' ;  A ,  = 0 without loss o f  generality) 
and N - 1 conditiosn onto the N 2  coefficients ee. Both are likely to reduce the number 
of conditions onto the coefficients f,, and e, by a factor of the order of N. In other 
words, in such cases, there is a linear combination z = Z j  Bixi which obeys a single 
Riccati equation. 

for which ( 4 6 )  can be fulfilled, too, then the (time-dependent) invariant 

A; = B;A, = BJ B,  = 1 i = 1,2,. . . , N 

Moreover, if there 2re M !i!X.ri!y independent sa!l?tia!ls {Ej! af !he system (4c) 

(23) 
N 

(a!yl+a!;) 31 < = I  B t x i ( t ) ) / x l l ( t ) =  1 

represents actually M different first integrals. 
The case N = 2 is trivial, of course, so we give few formulae for illustrational 

purposes. Let A ,  = B2A, (but not necessarily A ,  be regular). B,  obeys ( 9 0 )  and (9b )  
simultaneously, where it replaces E,. One obtains one compatibility condition between 
the coefficientsf,,, the concrete form of which depends on whichfjk are different from 
zero. 

For instance, iff, = 0 for i # j ,  then 

B2 = f222j'f: : (24) 

( f 2 2 2  -f, 1 2 ) f i l l  = f 2 2 2 f 2 1 2 .  ( 2 9  

e , , + B , e 2 , = b + A o c + b ' + c . A ,  (260) 
eI2 + B2e2, = B2(e l l  + B2e2J (266) 

and (26a)  determines, for example b = (el ,  + B2e2,)I, when for simplicity b'= 0, A,=O. 
In any case, there is a linear combination z = B,x,  + B,x2 which obeys a single 

Riccati equation, i = Cr2+ Dr + E, from which all relations can be derived by com- 
parison of coefficients. 

and the compatibility relation reads 

Further, for regular Ai it follows from ( 4 6 )  that 

5. Discussion 

A new method of analytically solving coupled Riccati equations is proposed. Its 
application requires certain interrelations o f  coefficients to be satisfied. Not surprisingly 
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(cf Ramani et al 1989), the conditions for the coefficients of the nonlinear terms Ajk 
turn out to be the most restrictive ones. The families of equations solvable by this 
method comprise, at least for two dependent variables, the projective Riccati case 

The range of applicability can be extended by means of transformations of the 
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(Jacobi equation) f 1 2 2 = f 2 1 1  =O, 2 f Z 1 2 = f i I I , f 2 2 2 = 2 f 2 , 2 .  

original equations. In particular, generalized Lotka-Volterra equations of the type 

can be brought into the form (1) (Goriely and Brenig 1990). 
Ramani et al (1984) have performed a rigorous Painlevt analysis of the system (1) 

with N = ? ~ , f , ~ ~ = f 2 , ~  = O , f , , ,  =fZz2= -1, 2fl,2= a, 2f2,,= b. The present method yields 
immediately a first integral for a + b = -2 and a + y = p + 8 (i.e. e,, + = e, ,+ e2>). 
Indeed, then the sum r = x + y  satisfies a single Riccati equation. After a linear 
transformation of the dependent variables, case (i) in subsection 3.3 provides explicit 
solutions for various combinations of values for a and b. One example is a = 0 ( b  = 0), 
but no restriction for b ( a )  (the conditions for the other coefficients are to be examined 
separately). Consequently, there are other whole families of coefficients for which 
system (1) is integrable, although it does not pass the PainlevC test. While the Painlev6 
analysis picks out enfire values for a and b, the present results, like others (e.g. system 
(2) in Ramani et al (1984)), suggest that many integrable cases are not confined to 
entire-valued coefficients. In other words, the PainlevC property is sufficient for integra- 
bility, but well beyond necessity. 

On the other hand, in all known cases of integrability of (1) certain relations 
between its coefficients are obeyed. It is thus suggested that integrability could be 
related to some modified Painlevt property in that the only movable singularities are 
not poles for each dependent variable, but branch points with certain relations between 
the exponents. This property would be even ‘weaker’ than ‘weak PainlevC‘ (Tabor 
1989), but, of course, less general than the psi-series (Levine and Tabor 1988). 

According to the form of the solutions of ( 2 ) ,  integrals of motion of (1) calculated 
by the proposed method would be of the form (linear combination of x,s) x T ( t )  with 
T ( t )  = & p ,  exp(A,t)/X, q, exp(A,t), where the A,s are eigenvalues of matrices derived 
from (2) and at once linear combinations of the eigenvalues of the corresponding 
Jacobian of (1). This form is distinctly simpler than the structure (algebraic function 
of the x,s) x e6‘ evolving from the Carleman embedding method, so that it is hoped to 
get not only new invariants for new parameter families, but also to benefit from the 
simple form of these invariants for the practical reduction of the system’s dimension. 

In summary, the embedding method proposed here solves new families of coupled 
Riccati equations. Its full range of applicability remains to be investigated. 
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